Seventh Semester B.E. Degree Examination, June/July 2019 Advanced Computer Architectures

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain the evolution of computer architecture.

(08 Marks)

b. Explain with diagram the operational model of SIMD super computer.

(08 Marks)

OR

2 a. Explain the Bernstein's conditions for parallelism. Detect the parallelism in the following code using Bernstein's conditions. (Assume no pipeline).

 $P_1: C = D \times E$; $P_2: M = G + C$; $P_3: A = B + C$; $P_4: C = L + M$; $P_5: G \div E$. (08 Marks)

b. With a diagram, explain the operation of tagged token data flow computer.

Module-2

3 a. Distinguish between typical RISC and CISC process architectures.

(08 Marks)

(08 Marks)

b. With a diagrams, explain the models of a basic scalar computer system.

(08 Marks)

OR

4 a. With a diagram, explain a typical superscalar RISC processor architecture consisting of an integer unit and a floating point unit. (10 Marks)

b. With a diagram, explain the hierarchical memory technology.

(06 Marks)

Module-3

5 a. Explain with diagram, the backplane bus specification.

(08 Marks)

b. With the diagrams, explain the central arbitration and distribution arbitration.

(08 Marks)

OR

6 a. For the reservation table of a non-linear pipeline shown below:

	1	2	3	4	5	6
S_1	X					X
S_2		X			X	
S ₂ S ₃ S ₄			X			
S ₄				X		
S ₅		X				X

- i) What are the forbidden latencies? Write initial collision vector
- ii) Draw the state transition diagram
- iii) List all simple cycles and greedy cycles

iv) Determine MAL.

(10 Marks)

b. Explain prefetch buffer and internal data forwarding mechanisms used in instruction pipelining. (06 Marks)

Module-4

- Explain crossbar networks and cross-point switch design in multiprocessor system. (08 Marks)
 - With necessary sketches, explain the cache-coherence problems in data sharing and in (08 Marks) process migration.

- With a diagram, explain the architecture of the connection machine CM-2. (08 Marks) 8 (08 Marks)
 - Explain the context-switching policies.

- Module-5
- Explain the concurrent OOP and an actor model in object oriented model. (08 Marks) 9 Explain the fairness policies and sole-access -protocols in the principles of synchronization.

(08 Marks)

OR

- What are the major hurdles of pipelining? Illustrate the branch hazards in detail. (08 Marks) 10
 - Explain the dynamic scheduling of a pipeline using Tomasulo's algorithm. (08 Marks)